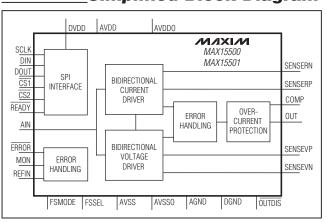


General Description

The MAX15500/MAX15501 analog output conditioners provide a programmable current up to ±24mA, or a voltage up to $\pm 12V$ proportional to a control voltage signal. The control voltage is typically supplied by an external DAC with an output voltage range of 0 to 4.096V for the MAX15500 and 0 to 2.5V for the MAX15501. The output current and voltage are selectable as either unipolar or bipolar. In the unipolar configuration, a control voltage of 5% full-scale (FS) produces a nominal output of 0A or 0V to achieve underrange capability. A control voltage of 100%FS produces one of two programmable levels (105%FS or 120%FS) to achieve overrange capability. The outputs of the MAX15500/MAX15501 are protected against overcurrent conditions and a short to ground or supply voltages up to ±35V. The devices also monitor for overtemperature and supply brownout conditions. The supply brownout threshold is programmable.


The MAX15500/MAX15501 are programmed through an SPI™ interface capable of daisy-chained operation. The MAX15500/MAX15501 provide extensive error reporting through the SPI interface and an additional open-drain interrupt output. The devices include an analog output to monitor load conditions.

The MAX15500/MAX15501 operate over the -40°C to +105°C temperature range. The devices are available in a 32-pin, 5mm x 5mm TQFN package.

Applications

Programmable Logic Controllers (PLCs) Distributed I/Os **Embedded Systems** Industrial Control and Automation

Simplified Block Diagram

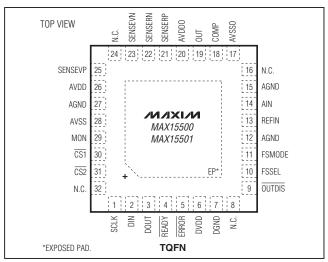
Features

- ♦ Supply Voltage Up to ±32.5V
- ♦ Output Protected Up to ±35V
- ♦ Programmable Output (Plus Overrange)

0 to 10V 0 to 5V ±20mA 0 to 20mA 4 to 20mA

- ♦ Current Output Drives 0 to 1kΩ
- ♦ Voltage Output Drives Loads Down to 1kΩ
- ♦ HART Compliant
- ♦ 2ppm Gain Error Drift Over Temperature
- SPI Interface, with Daisy-Chain Capability
- Supports +4.096V (MAX15500) or +2.5V (MAX15501) Full-Scale Input Signals
- **Extensive Error Reporting Short-Circuit and Overcurrent Protection Open-Circuit Detection Brownout Detection** Overtemperature Protection
- ◆ Fast, 40µs Settling Time

Ordering Information


PART	PIN-PACKAGE	REFERENCE
MAX15500GTJ+	32 TQFN	+4.096V
MAX15501GTJ+	32 TQFN	+2.5V

Note: All devices are specified over the -40°C to +105°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

SPI is a trademark of Motorola, Inc.

Pin Configuration

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

AVDD to AGND	0.21/ to +251/
AVDD to AGND	0.3 1 10 +33 1
AVSS to AGND	35V to +0.3V
AVDD to AVSS	0 to +70V
AVDD to AVDDO	0 to +4V
AVSS to AVSSO	4V to 0V
DGND to AGND	0.3V to +0.3V
AVDD to DVDD	6V to +35V
DVDD to DGND	0.3V to +6.0V
CS1, CS2, SCLK, DIN, DOUT, READY, ERF	ROR, FSMODE,
MON, OUTDIS, FSSEL to DGND	0.3V to +6.0V
AIN, REFIN to AGND	0.3V to +6.0V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{AVDD} = +24V, V_{AVSS} = -24V, V_{DVDD} = 5.0V, C_{LOAD} = 1nF, C_{COMP} = 0nF, V_{REFIN} = 4.096V$ for the MAX15500, $V_{REFIN} = 2.5V$ for the MAX15501. All specifications for $T_A = -40^{\circ}C$ to $+105^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY (Note 1)			•			
Analog Positive Cupply Voltage	\/A\/\DD	5% overrange (FSMODE = DVDD)	15	24	32.5	V
Analog Positive Supply Voltage	Vavdd	20% overrange (FSMODE = DGND)	18.5	24	32.5	V
Analog Negative Supply	V41100	5% overrange (FSMODE = DVDD)	-32.5	-24	-15	V
Voltage	Vavss	20% overrange (FSMODE = DGND)	-32.5	-24	-18.5	V
AVDD to AVDDO Voltage Difference	Vavddo	(Note 1)		2.5		V
AVSS to AVSSO Voltage Difference	Vavsso	(Note 1)		2.5		V
Digital Supply Voltage	V _D VDD		2.7		5.25	V
Analog Positive Supply Current	IAP	IAP = IAVDD + IAVDDO, ILOAD = 0		5	7	mA
Analog Negative Supply Current	I _{AN}	IAN = IAVSS + IAVSSO, ILOAD = 0	-7	-4.5		mA
Digital Supply Current	IDVDD	$V_{DVDD} = 5V$		0.1	0.4	mA
Analog Positive Standby Current	ISTBYP	ISTBYP = IAVDD + IAVDDO, OUTDIS = DGND or software standby mode		1		mA
Analog Negative Standby Current	ISTBYN	ISTBYN = IAVSS + IAVSSO, OUTDIS = DGND or software standby mode		-0.5		mA
ANALOG INPUT (AIN, REFIN)			•			
Input Impedance	RIN			10		kΩ
Input Capacitance	CIN			10		рF
Anada a la ant Full Caala	VAIN	FSSEL = DVDD, MAX15500	4.0	4.096	4.2	V
Analog Input Full Scale	VAIN	FSSEL = DGND, MAX15501	2.4	2.5	2.6	V
REFIN Full-Scale Input	VREFIN	FSSEL = DVDD, MAX15500	4.0	4.096	4.2	V
TEL IIV I dil-ocale iliput	VUELIN	FSSEL = DGND, MAX15501	2.4	2.5	2.6	v

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = +24V, VAVSS = -24V, VDVDD = 5.0V, CLOAD = 1nF, CCOMP = 0nF, VREFIN = 4.096V for the MAX15500, VREFIN = 2.5V for the MAX15501. All specifications for TA = -40°C to +105°C. Typical values are at TA = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
CURRENT OUTPUT (Note 2)							
	D	V _A V _{DD} = +24V, V _A V	/SS = -24V		750		-
Maximum Load Resistance	RLOAD	VAVDD = +32.5V, V	AVSS = -32.5V	1000			Ω
Maximum Load Inductance	LLOAD	CCOMP = 100nF (No	ote 3)		15		mH
Maximum Load Capacitance	Cload	CCOMP = 4.7nF			100		μF
			To 0.1% accuracy, LLOAD = 20µH, CCOMP = 0nF		40		
			To 0.1% accuracy, LLOAD = 1mH, CCOMP = 0.15nF		500		
		Full-scale step from 0 to 20mA or -20mA to + 20mA, RLOAD = 750Ω	To 0.1% accuracy, LLOAD = 10mH, CCOMP = 0.15nF		500		
Maximum Settling Time			To 0.01% accuracy, LLOAD = 20µH, CCOMP = 0nF		60		
			To 0.01% accuracy, LLOAD = 10mH, CCOMP = 0.15nF		600		μs
namina Souning initia			To 0.1% accuracy, LLOAD = 20µH, CCOMP = 0nF		20		po
			To 0.1% accuracy, LLOAD = 1mH, CCOMP = 0.15nF		100		
		1% full-scale step, RLOAD = 750Ω	To 0.1% accuracy, LLOAD = 10mH, CCOMP = 0.15nF		100		
			To 0.01% accuracy, LLOAD = 20µH, CCOMP = 0nF		40		
			To 0.01% accuracy, LLOAD = 10mH, CCOMP = 0.15nF		200		
Full-Scale Output Current	lour	VFSMODE = VDVDD			±21		m ^
ruii-ocale Output Current	lout	VFSMODE = VDGND			±24		mA

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = +24V, VAVSS = -24V, VDVDD = 5.0V, CLOAD = 1nF, CCOMP = 0nF, VREFIN = 4.096V for the MAX15500, VREFIN = 2.5V for the MAX15501. All specifications for $T_A = -40^{\circ}C$ to $+105^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Offset Error		VAIN = 5% of VREFIN VAIN = 50% of VREFI			±0.1	±0.5	%FS
Offset-Error Drift					±5		ppm/°C
Gain Error	GE	0.01% precision RSENSE, tested according to the ideal transfer	MAX15500		±0.1	±0.51	%FS
		functions shown in Table 8	MAX15501		±0.1	±0.5	
Gain-Error Drift		No RSENSE drift			±2		ppm/°C
Integral Nonlinearity Error	INL				0.05		%FS
Output Conductance		(dlout/dVout), lout 750 Ω to 0 Ω , FSMOD mode			1.0		μΑ/V
Power-Supply Rejection Ratio	PSRR	At DC, VAVDD = +24 = -24V to -32.5V, VAI mode, FSMODE = D	N = V _{REFIN} , unipolar		1.6		μΑ/V
Overcurrent Limit		RSENSE shorted		25	30	40	mA
Output Current Noise		0.1Hz to 10Hz			20		nARMS
Output Current Noise		At 1kHz			2.6		nA/√Hz
Output Slew Rate					1.5		mA/µs
Small-Signal Bandwidth					30		kHz
Maximum OUT Voltage to AVDDO		Vavddo - Vout			2.0		V
Minimum OUT Voltage to AVSSO		Vout - Vavsso			2.0		V
VOLTAGE OUTPUT (RLOAD = 1	k Ω)						
Minimum Resistive Load	RLOAD				1		kΩ
Maximum Capacitive Load	CLOAD	CCOMP = 4.7nF			100		μF
Maximum Settling Time (Full-Scale Step)		To 0.1% accuracy, lowith 1nF, Comp = 0			20		
		To 0.1% accuracy, lowith 1µF, CCOMP = 4			1000		
		To 0.01% accuracy, with 1nF, CCOMP = 0	load = $1k\Omega$ in parallel onF		30		μs
		To 0.01% accuracy, keep with 1µF, CCOMP = 4.			1300		

ELECTRICAL CHARACTERISTICS (continued)

(VAVDD = +24V, VAVSS = -24V, VDVDD = 5.0V, CLOAD = 1nF, CCOMP = 0nF, VREFIN = 4.096V for the MAX15500, VREFIN = 2.5V for the MAX15501. All specifications for TA = -40°C to +105°C. Typical values are at TA = +25°C, unless otherwise noted.)

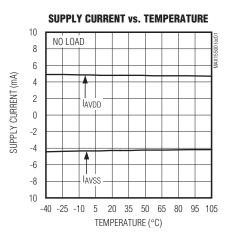
PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
			To 0.1% accuracy, load = $1k\Omega$ in parallel with 1nF, CCOMP = 0 nF		10		
Maximum Settling Time		To 0.1% accuracy, lowith 1µF, CCOMP = 4	pad = 1k Ω in parallel 4.7nF		300		110
(1% Full-Scale Step)		To 0.01% accuracy, with 1nF, CCOMP = 0	load = $1k\Omega$ in parallel Ω		20		μs
		To 0.01% accuracy, with 1µF, CCOMP = 4	load = $1k\Omega$ in parallel 4.7nF		600		
Gain Error		Tested according to functions shown in T			±0.1	±0.5	%FS
Gain-Error Drift					±2		ppm/°C
		FSMODE = DVDD -	5V range		5.25		V
	\/a=		10V range		10.5		
Full-Scale Output Voltage	Vout	FSMODE = DGND	5V range		6		
			10V range		12		
Offset Error			V _{AIN} = 5% of V _{REFIN} (unipolar mode), V _{AIN} = 50% of V _{REFIN} (bipolar mode)		±0.1	±0.5	%FS
Offset-Error Drift					±2		ppm/°C
Integral Nonlinearity Error	INL				0.05		%FS
Power-Supply Rejection	PSRR	At DC, VAVDD = +18 = -18.5V to -32.5V, V	3.5V to +32.5V, VAVSS VAIN = VREFIN		30		μV/V
Output Voltage Noise		0.1Hz to 10Hz			16.3		μVRMS
Output-Voltage Noise		1kHz			250		nV/√Hz
Output-Voltage Slew Rate					1.5		V/µs
Short-Circuit Current				20	30	45	mA
Maximum OUT Voltage to AVDDO		Vavddo - Vout			2.0		V
Minimum OUT Voltage to AVSSO		Vout - Vavsso			2.0		V

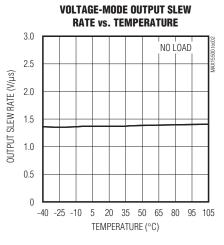
► ELECTRICAL CHARACTERISTICS (continued)

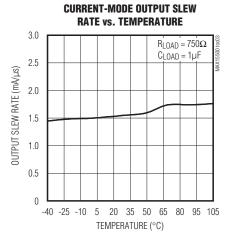
(VAVDD = +24V, VAVSS = -24V, VDVDD = 5.0V, CLOAD = 1nF, CCOMP = 0nF, VREFIN = 4.096V for the MAX15500, VREFIN = 2.5V for the MAX15501. All specifications for $T_A = -40^{\circ}C$ to $+105^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

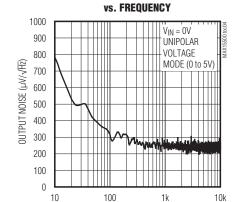
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT MONITOR (MON)						
Maximum Output Voltage		Current mode, see the <i>Output Monitor</i> section for V _{MON} equations		3		V
iviaximum Output Voltage		Voltage mode, see the <i>Output Monitor</i> section for V _{MON} equations		3		V
Output Resistance				35		kΩ
OVERTEMPERATURE DETECT	ION					
Overtemperature Threshold				+150		°C
Overtemperature Threshold Hysteresis				10		°C
DIGITAL INPUTS (CS1, CS2, SC	LK, DIN, OU	TDIS, FSSEL, FSMODE)				
Input High Voltage	VIH		0.7 x VDVDD			V
Input Low Voltage	VIL				0.3 x V _D VDD	V
Input Hysteresis	VIHYST			300		mV
Input Leakage Current	IIN	VINPUT = 0V or VDVDD		±0.1	±1.0	μΑ
Input Capacitance	CIN			10		рF
DIGITAL OUTPUT (DOUT, REAL						
Output Low Voltage	VoL	ISINK = 4mA			0.4	V
Output High Voltage	Voн	ISOURCE = 4mA	V _{DVDD} - 0.5			V
Output Three-State Leakage	loz	DOUT only		±0.1	±10	μΑ
Output Three-State Capacitance	Coz	DOUT only		15		рF
Output Short-Circuit Current	loss	V _D V _D D = 5.25V		±150		mA
DIGITAL INTERRUPT (ERROR)						
Interrupt Active Voltage	VINT	ISINK = 5.0mA			0.4	V
Interrupt Inactive Leakage	INTZ			±0.1	±1.0	μΑ
Interrupt Inactive Capacitance	CINTZ			15		рF
Interrupt Short-Circuit Current	INTSS	$V_{DVDD} = 2.7V$	5	30		mA

ELECTRICAL CHARACTERISTICS (continued)

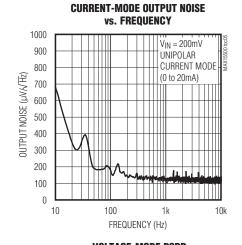

(VAVDD = +24V, VAVSS = -24V, VDVDD = 5.0V, CLOAD = 1nF, CCOMP = 0nF, VREFIN = 4.096V for the MAX15500, VREFIN = 2.5V for the MAX15501. All specifications for TA = -40°C to +105°C. Typical values are at TA = +25°C, unless otherwise noted.)

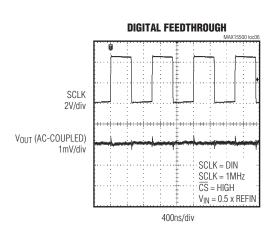

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS	1					
Serial-Clock Frequency	fsclk	(Note 4)	0		20	MHz
SCLK Pulse-Width High	tCH	40% duty cycle	20			ns
SCLK Pulse-Width Low	tCL	60% duty cycle	20			ns
CS_ Fall to SCLK Fall Setup Time	tcss	To 1st SCLK falling edge	15			ns
SCLK Fall to CS_ Fall Hold Time	tcsh	(Note 5)	0			ns
DIN to SCLK Fall Setup Time	tDS		15			ns
DIN to SCLK Fall Hold Time	tDH		0			ns
SCLK Fall to DOUT Settle Time	tDOT	CLOAD = 20pF			30	ns
SCLK Fall to DOUT Hold Time	tDOH	CLOAD = 0pF	2			ns
SCLK Fall to DOUT Disable	tDOZ	14th SCLK deassertion (Note 6)			30	ns
SCLK Fall to READY Fall	tcr	16th SCLK assertion, CLOAD = 0pF or 20pF	2		30	ns
CS_ Fall to DOUT Enable	tDOE	Asynchronous assertion	1		35	ns
CS_ Rise to DOUT Disable	tcsdoz	Asynchronous deassertion			35	ns
CS_ Rise to READY Rise	tCSR	Asynchronous deassertion, CLOAD = 20pF			35	ns
CS_ Pulse-Width High	tcsw		15			ns

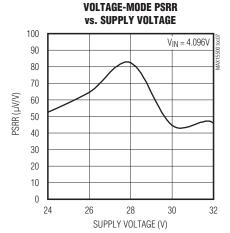

- **Note 1:** Use diodes as shown in the *Typical Operating Circuit/Functional Diagram* to ensure a voltage difference of 2V to 3.5V from AVDD to AVDDO and from AVSS to AVSSO.
- Note 2: $R_{LOAD} = 750\Omega$. For the MAX15500, RSENSE = 48.7Ω for FSMODE = DVDD and RSENSE = 42.2Ω for FSMODE = DGND. For the MAX15501, RSENSE = 47.3Ω for FSMODE = DVDD and RSENSE = 41.2Ω for FSMODE = DGND. See the *Typical Operating Circuit/Functional Diagram*.
- Note 3: Condition at which part is stable.
- Note 4: The maximum clock speed for daisy-chain applications is 10MHz.
- Note 5: t_{CSH} is applied to $\overline{\text{CS}_-}$ falling to determine the 1st SCLK falling edge in a free-running SCLK application. It is also applied to $\overline{\text{CS}_-}$ rising with respect to the 15th SCLK falling edge to determine the end of the frame.
- Note 6: After the 14th SCLK falling edge, the MAX15500/MAX15501 outputs are high impedance and DOUT data is ignored.


Typical Operating Characteristics

(V_{AVDD} = +24V, V_{DVDD} = +5V, V_{AVSS} = -24V, C_{LOAD} = 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output mode, V_{REFIN} = +4.096V, T_A = +25°C, unless otherwise specified.)

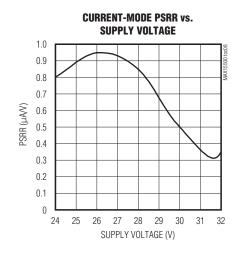


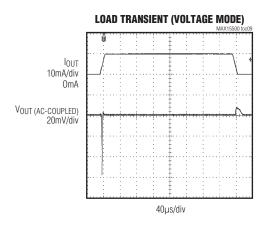


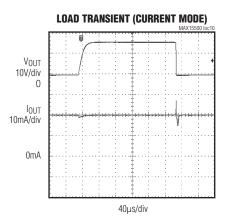


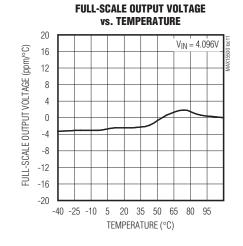
FREQUENCY (Hz)

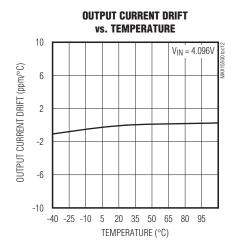
VOLTAGE-MODE OUTPUT NOISE

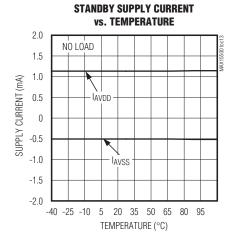


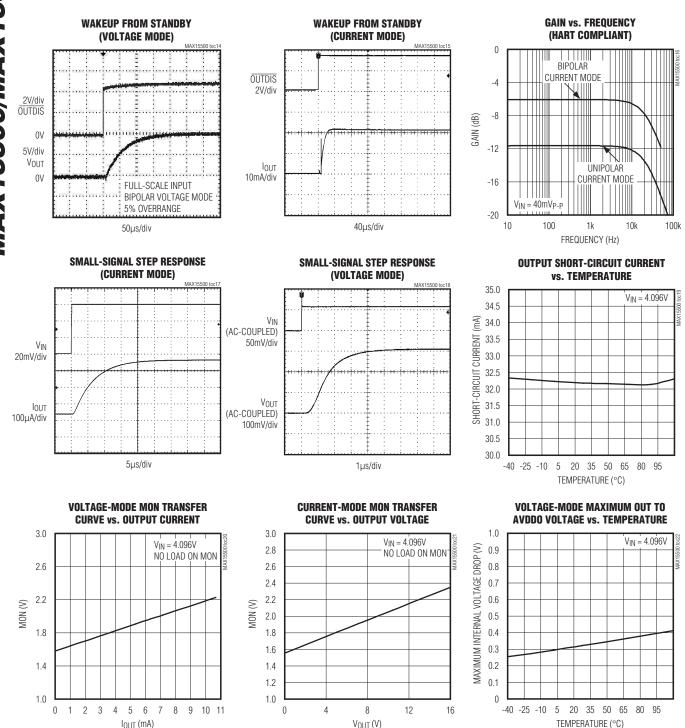


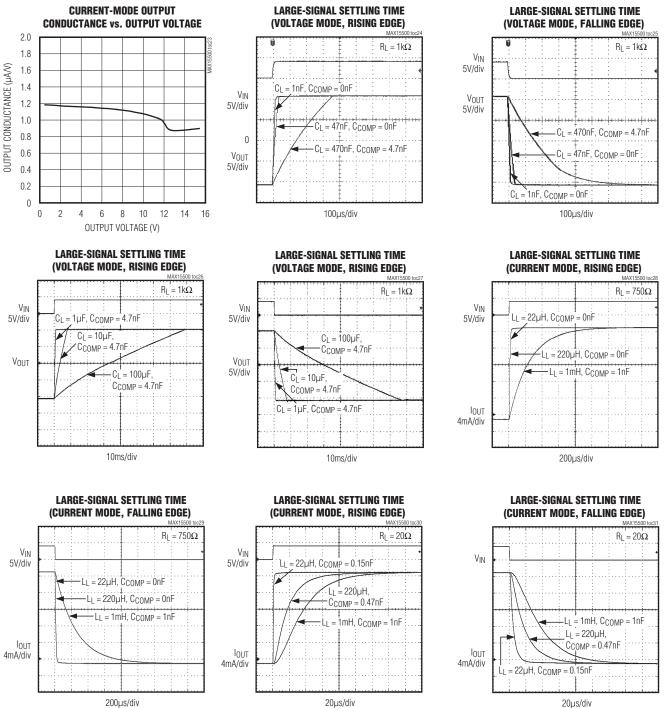



Typical Operating Characteristics (continued)

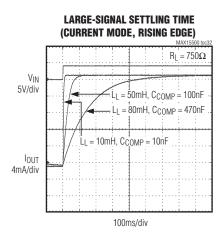

 $(V_{AVDD} = +24V, V_{DVDD} = +5V, V_{AVSS} = -24V, C_{LOAD} = 1nF, 5\%$ overrange mode, unipolar current output or bipolar voltage-output mode, $V_{REFIN} = +4.096V, T_A = +25$ °C, unless otherwise specified.)

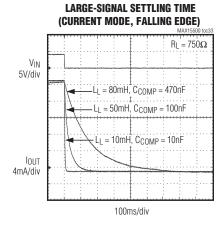


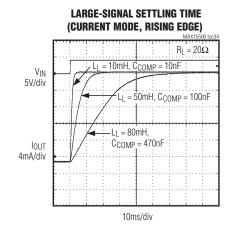


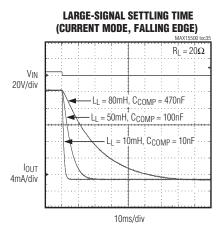

Typical Operating Characteristics (continued)

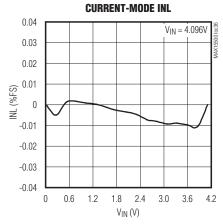
(V_{AVDD} = +24V, V_{DVDD} = +5V, V_{AVSS} = -24V, C_{LOAD} = 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output mode, V_{REFIN} = +4.096V, T_A = +25°C, unless otherwise specified.)

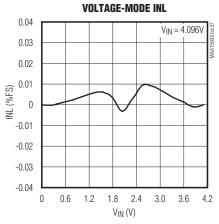

Typical Operating Characteristics (continued)

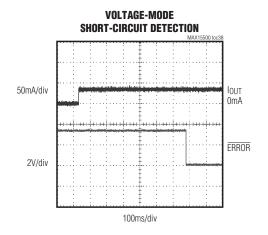

(V_{AVDD} = +24V, V_{DVDD} = +5V, V_{AVSS} = -24V, C_{LOAD} = 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output mode, V_{REFIN} = +4.096V, T_A = +25°C, unless otherwise specified.)

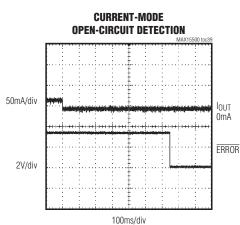


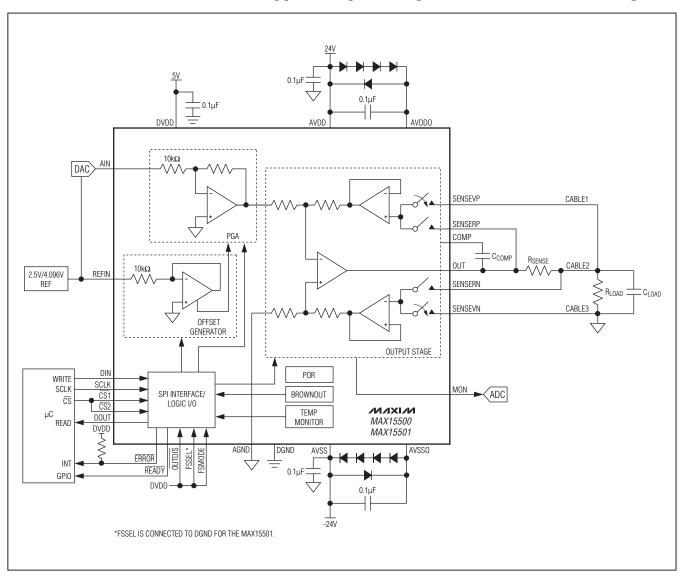

Typical Operating Characteristics (continued)


 $(V_{AVDD} = +24V, V_{DVDD} = +5V, V_{AVSS} = -24V, C_{LOAD} = 1nF, 5\%$ overrange mode, unipolar current output or bipolar voltage-output mode, $V_{REFIN} = +4.096V, T_{A} = +25^{\circ}C$, unless otherwise specified.)








Pin Description

PIN	NAME	FUNCTION
1	SCLK	SPI Clock Input. Activate SCLK only when $\overline{\text{CS}}$ is low to minimize noise coupling.
2	DIN	SPI Data Input. Data is clocked into the serial interface on the falling edge of SCLK.
3	DOUT	SPI Data Output. Data transitions at DOUT on the rising edge of SCLK. DOUT is high impedance when either CS1 or CS2 is high.
4	READY	Active-Low Device Ready Output. \overline{READY} is an active-low output that goes low when the device successfully completes processing an SPI data frame. \overline{READY} returns high at the next rising edge of \overline{CS} . In daisy-chain applications, the \overline{READY} output typically drives the \overline{CS} input of the next device in the chain or a GPIO of a microcontroller.
5	ERROR	Active-Low Flag Output. ERROR is an open-drain output that pulls low when output short circuit, output open circuit, overtemperature, or brownout conditions occur. ERROR typically drives an interrupt input of a microcontroller. The ERROR output is cleared after the internal error register is read through the SPI interface. Connect a 10kΩ pullup resistor from ERROR to DVDD.
6	DVDD	Digital Power-Supply Voltage Input. Apply either a 3V or 5V nominal voltage supply to DVDD. DVDD powers the digital portion of the MAX15500/MAX15501. Bypass DVDD to DGND with a 0.1µF capacitor as close as possible to the device.
7	DGND	Digital Ground
8, 16, 24, 32	N.C.	No Connection. Not internally connected.
9	OUTDIS	Active-Low Output Disable Input. OUTDIS is an active-low logic input that forces the analog output to 0A or 0V and puts the device in standby mode when connected to DGND. Connect OUTDIS to DVDD for normal operation.
10	FSSEL	Full-Scale Select Input. Connect FSSEL to DVDD for the MAX15500 when applying a +4.096V reference at REFIN. Connect FSSEL to DGND for the MAX15501 when applying a +2.50V reference at REFIN.
11	FSMODE	Overrange Mode Select Input. Connect FSMODE to DVDD to set the output voltage to 105%FS when the input voltage is equal to the full-scale value. Connect FSMODE to DGND to set the output voltage to 120%FS when the input voltage is equal to the full-scale value. FSMODE has no effect in current mode.
12, 15, 27	AGND	Analog Ground
13	REFIN	Reference Voltage Input. Connect REFIN to an external +4.096V reference for the MAX15500 or +2.5V reference for the MAX15501. REFIN is used to set the offset for unipolar and bipolar modes.
14	AIN	Analog Signal Input. The analog input signal range at AIN is from 0V to the nominal full scale of +4.096V for the MAX15500 and +2.5V for the MAX15501.
17	AVSSO	Negative Output Driver Supply Voltage Input. AVSSO provides power to the driver output stage. Bypass AVSSO to AVSS with a 0.1µF capacitor. Use diodes as shown in the <i>Typical Operating Circuit/Functional Diagram</i> to ensure a voltage difference of 2V to 3.5V between AVSS and AVSSO.
18	COMP	Output Amplifier Compensation Feedback Node. Connect a compensation capacitor from COMP to OUT. See Table 10 for the recommended compensation capacitor values.

Pin Description (continued)

PIN	NAME	FUNCTION
19	OUT	Analog Output. The analog voltage or current output range at OUT is programmable. See Tables 1 to 4 for possible output range settings.
20	AVDDO	Positive Output Driver Supply Voltage Input. AVDDO provides power to the driver output stage. Bypass AVDDO to AVDD with a 0.1µF capacitor. Use diodes as shown in the <i>Typical Operating Circuit/Functional Diagram</i> to ensure a voltage difference of 2V to 3.5V between AVDD and AVDDO.
21	SENSERP	Sense Resistor Positive Connection. See the <i>Typical Operating Circuit/Functional Diagram</i> for the typical connection.
22	SENSERN	Sense Resistor Negative Connection. See the <i>Typical Operating Circuit/Functional Diagram</i> for the typical connection.
23	SENSEVN	Kelvin Sense Voltage Negative Input. See the <i>Typical Operating Circuit/Functional Diagram</i> for the typical connection.
25	SENSEVP	Kelvin Sense Voltage Positive Input. See the <i>Typical Operating Circuit/Functional Diagram</i> for the typical connection.
26	AVDD	Positive Analog Supply Voltage Input. Bypass AVDD to AGND with a 0.1µF capacitor.
28	AVSS	Negative Analog Supply Voltage Input. Bypass AVSS to AGND with a 0.1µF capacitor.
29	MON	Load Monitoring Output. MON provides an analog 0 to 3V output. See the <i>Output Monitor</i> section.
30	CS1	Active-Low SPI Chip-Select Input 1. See the SPI Interface section.
31	CS2	Active-Low SPI Chip-Select Input 2. See the SPI Interface section.
	EP	Exposed Pad. Internally connected to AVSS. Connect to AVSS. Connect to a large copper area to maximize thermal performance. Do not connect ground or signal lines through EP.

Typical Operating Circuit/Functional Diagram

Detailed Description

The MAX15500/MAX15501 output a programmable current up to ±24mA or a voltage up to ±12V proportional to a control signal at AIN. The devices operate from a dual 15V to 32.5V supply. The control voltage applied at AIN is typically supplied by an external DAC with an output voltage range of 0 to 4.096V for the MAX15500 and 0 to 2.5V for the MAX15501. The MAX15500/MAX15501 are capable of both unipolar and bipolar current and voltage outputs. In current mode, the devices produce currents of -1.2mA to +24mA or -24mA to +24mA. In voltage mode, the devices produce voltages of -0.3V to +6V, -0.6V to +12V, or ±12V. To allow for overrange and underrange capability in unipolar mode, the transfer function of the MAX15500/MAX15501 is offset such that when the voltage at AIN is 5% of full scale, IOUT is 0mA and Vout is 0V. Once VAIN attains full scale, Vout or IOUT becomes full scale +5% or +20% depending on the state of FSMODE. The MAX15500/MAX15501 are protected against overcurrent and short-circuit conditions when OUT goes to ground or a voltage up to ±32.5V. The devices also monitor for overtemperature and supply brownout conditions. The supply brownout threshold is programmable between ±10V and ±24V in 2V increments.

The MAX15500/MAX15501 are programmed through an SPI interface with daisy-chain capability. A device ready logic output (\overline{READY}) and two device select inputs $(\overline{CS1})$ and $(\overline{CS2})$ facilitate a daisy-chain arrangement for multiple

Table 1. Output Values for FSMODE = DVDD, Unipolar 5% Overrange

OUTPUT RANGE	OUTPUT VALUES			
OUTPUT RANGE	VAIN = 5%FS	VAIN = FS		
0 to 20mA (4mA to 20mA)	0mA	21mA		
0 to 5V	OV	5.25V		
0 to 10V	OV	10.5V		

Table 2. Output Values for FSMODE = DGND, Unipolar 20% Overrange

OUTPUT RANGE	OUTPUT VALUES			
OUTPUT RANGE	V _{AIN} = 5%FS	V _{AIN} = FS		
0 to 20mA (4mA to 20mA)	0mA	24mA		
0 to 5V	OV	6V		
0 to 10V	OV	12V		

device applications. The MAX15500/MAX15501 provide extensive error reporting of short-circuit, open-circuit, brownout, and overtemperature conditions through the SPI interface and an additional open-drain interrupt output (ERROR). The MAX15500/MAX15501 include an analog 0 to 3V output (MON) to monitor the load condition at OUT.

Analog Section

The MAX15500/MAX15501 support two output modes: current and voltage. Each mode has different full-scale output values depending on the state of FSMODE as detailed in Tables 1 to 4 and Figures 1 and 2. Use the device configuration register in Table 6 to select the desired voltage or current output range.

Startup

During startup, the MAX15500/MAX15501 output is set to zero and all register bits are set to zero. The devices remain in standby mode until they are configured through the SPI interface.

Input Voltage Range

The input voltage full-scale level is selectable between 2.5V and 4.096V using logic input FSSEL. The MAX15500 is specified for a 0 to 4.096V input voltage range, while the MAX15501 is specified for a 0 to 2.500V input voltage range. Connect FSSEL to DVDD to set the input range to 0 to 4.096V for the MAX15500. Connect FSSEL to DGND to set the input range to 0 to 2.500V for the MAX15501.

Table 3. Output Values for FSMODE = DVDD, Bipolar 5% Overrange

OUTPUT RANGE	OUTPUT VALUES				
OUTPUT HANGE	VAIN = 0V	VAIN = FS			
±20mA	-21mA	+21mA			
±10V	-10.5V	+10.5V			

Table 4. Output Values for FSMODE = DGND, Bipolar 20% Overrange

<u> </u>					
OUTPUT RANGE	OUTPUT VALUES				
OUTPUT HANGE	VAIN = 0V	VAIN = FS			
±20mA	-24mA	+24mA			
±10V	-12V	+12V			

Output Monitor

The MON output provides an analog voltage signal proportional to the output voltage in current mode and proportional to the output current in voltage mode. Use this signal to measure the system load presented to the output. The full-scale signal on MON is 3V with a typical accuracy of 10%. The signal range is typically 1.5V to 3V in unipolar mode and 0 to 3V in bipolar mode.

In current mode, the MAX15500/MAX15501 program IOUT and monitor the voltage at SENSERN.

 $V_{MON} = 1.425V + (V_{SENSERN}/20)$

RLOAD = ((VMON - 1.425V) x 20)/IOUT(PROGRAMMED)
In voltage mode, the MAX15500/MAX15501 program VOUT and monitor IOUT.

 $VMON = 1.521V + 62.4 \times ILOAD$

RLOAD = VOUT(PROGRAMMED)/((VMON - 1.521V)/62.4)

Error Handling

Many industrial control systems require error detection and handling. The MAX15500/MAX15501 provide extensive error status reporting.

An open-drain interrupt flag output, ERROR, pulls low when an error condition is detected. An error register stores the error source. Reading the error register once

resets the $\overline{\text{ERROR}}$ pin but not the error register itself, allowing the system to determine the source of the error and take steps to fix the error condition. After the error condition has been fixed, read the error register for the second time to allow the device to clear the error register. Read the error register for the third time to verify if the error register has been cleared. If another error occurs after the first read, $\overline{\text{ERROR}}$ goes low again. More information on reading and clearing the error register is described in the *SPI Interface* section.

When an output short-circuit or output open-load error occurs and disappears before the error register is read, the intermittent bit is set in the error register. The intermittent bit does not assert for brownout and overtemperature error conditions.

Error Conditions

Output Short Circuit

The output short-circuit error bit asserts when the output current exceeds 30mA (typ) for longer than 260ms. In current mode, this error occurs when the sense resistor is shorted and the sense voltage is not equal to 0V. In voltage mode, this error occurs when the load is shorted to the supply or ground. The short-circuit error activates the intermittent bit in the error register if the error goes away before the error register is read.

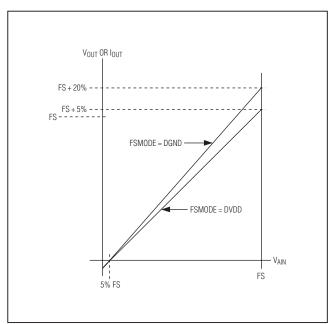


Figure 1. Unipolar Transfer Function

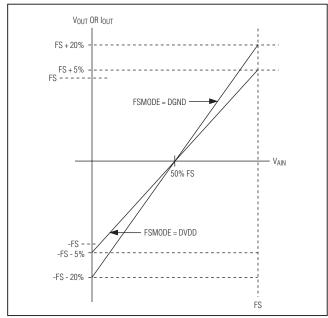


Figure 2. Bipolar Transfer Function

Output Open Load

The open-circuit error bit activates when V_{OUT} is within 30mV of AVDDO or AVSSO and there is no short-circuit current in current mode for longer than 260ms. This error activates the intermittent bit in the error register if the error goes away before the error register is read.

Internal Overtemperature

The MAX15500/MAX15501 enter standby mode if the die temperature exceeds +150°C and the overtemperature protection is enabled as shown in Table 6. When the die temperature cools down below +140°C, the error register must be read back twice to resume normal operation. The devices provide a 10°C hysteresis.

Brownout

The brownout-error bit activates when the supply voltage (VAVDD or VAVSS) falls below the brownout threshold. The threshold is programmable between ±10V to ±24V in 2V steps. See Table 6 for details. The MAX15500/MAX15501 provide a 2% hysteresis for the brownout threshold. The accuracy of the threshold is typically within 10%. During power-up, ERROR can go low and the brownout register is set. Users need to read out the error register twice to clear all the error register bits and reset ERROR to high.

Output Protection

The MAX15500/MAX15501 supply inputs (AVDD, AVDDO, AVSS, and AVSSO) and sense inputs (SENSERN, SENSERP, SENSEVN, and SENSEVP) are protected against voltages up to ±35V with respect to AGND. See the *Typical Operating Circuit/Functional Diagram* for the recommended supply-voltage connection.

SPI Interface

Standard SPI Implementation

The MAX15500/MAX15501 SPI interface supports daisychaining. Multiple MAX15500/MAX15501 devices can be controlled from a single 4-wire SPI interface. The MAX15500/MAX15501 feature dual CS_ inputs and an added digital output, READY, that signals when the devices finish processing the SPI frame. CS1 and CS2 are internally OR-ed. Pull both CS1 and CS2 to logic-low to activate the MAX15500/MAX15501. For a daisy-chained application, connect the CS1 input of all of the devices in the chain to the \overline{CS} driver of the microcontroller. Connect the CS2 input of the first device to ground or to the $\overline{\text{CS}}$ driver of the microcontroller. Connect CS2 of the remaining devices to the READY output of the preceding device in the chain. The READY output of the last device in the chain indicates when all slave devices in the chain are configured. Connect the READY output of the last device in the chain to the microcontroller. Use the open-drain ERROR output as a wired-OR interrupt. See Figures 3 to 6.

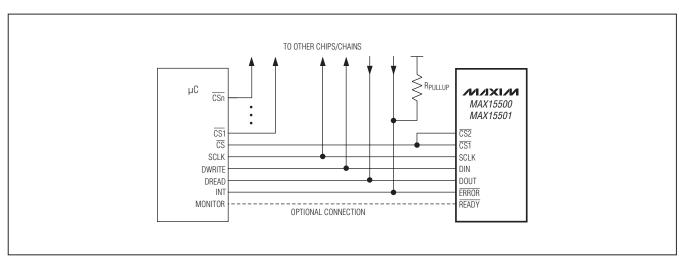


Figure 3. Single Connection (Compatible with Standard SPI)

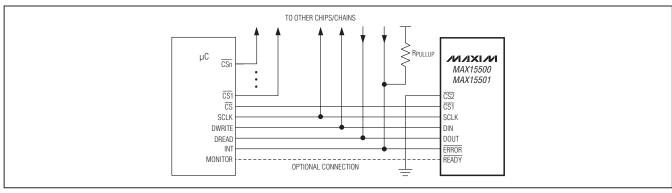


Figure 4. Alternate Single Connection (Compatible with Standard SPI)

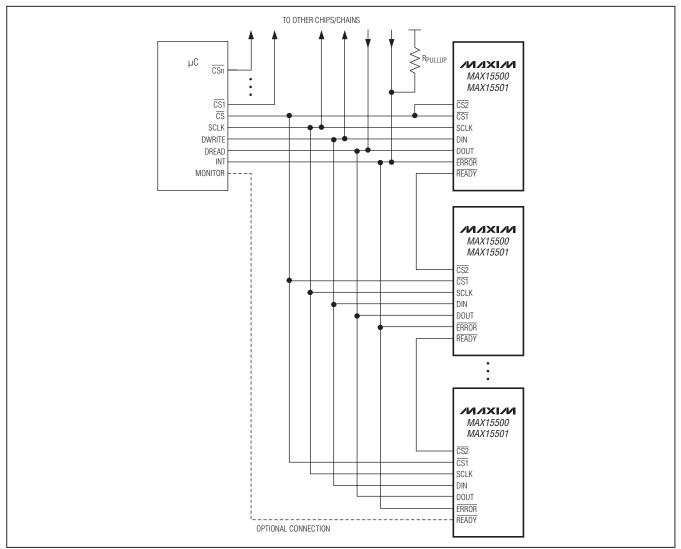


Figure 5. Daisy-Chain Connection (Compatible with Standard SPI)

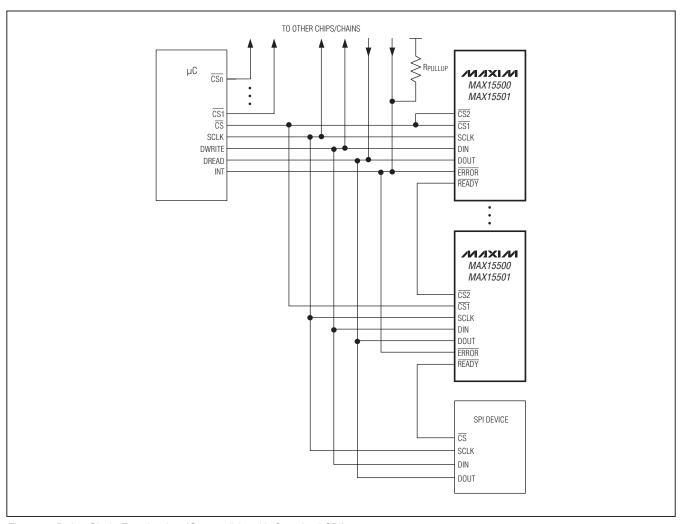


Figure 6. Daisy-Chain Terminating (Compatible with Standard SPI)

Modified SPI Interface Description

The SCLK, DIN, and DOUT of the MAX15500/MAX15501 assume standard SPI functionality. While the basic function of the MAX15500/MAX15501 $\overline{\text{CS}}_-$ inputs is similar to the standard SPI interface protocol, the management of the $\overline{\text{CS}}_-$ input within the chain is modified. When both $\overline{\text{CS}}_-$ inputs are low, the MAX15500/MAX15501 assume control of the DOUT line and continue to control the line until the data frame is finished and $\overline{\text{READY}}$ goes low (Figure 9). Once a complete frame is processed and the $\overline{\text{READY}}$ signal is issued, the devices do not accept any data from DIN, until either $\overline{\text{CS1}}$ or $\overline{\text{CS2}}$ rises and returns

low. A new communication cycle is initiated by a subsequent falling edge on $\overline{CS1}$ or $\overline{CS2}$. When either $\overline{CS1}$ or $\overline{CS2}$ is high, the MAX15500/MAX15501 SPI interface deactivates, DOUT returns to a high-impedance mode, \overline{READY} (if active) clears, and any partial frames not yet processed are ignored.

READY asserts once a valid frame is processed allowing the next device in the chain to begin processing the subsequent frame. A valid frame consists of 16 SCLK cycles following the falling edge of \overline{CS} . Once \overline{READY} asserts, it remains asserted until either \overline{CS} rises, completing the programming of the chain.

The MAX15500/MAX15501 relinquish control of DOUT once the devices process the frame(s). DOUT remains high impedance when the SPI interface continues to hold $\overline{\text{CS}}_{-}$ low beyond the required frame(s). Install a pullup/puldown resistor at the DOUT line to maintain the desired state when DOUT goes high impedance.

Single Device SPI Connection

For applications using a single MAX15500 or MAX15501, connect both $\overline{\text{CS1}}$ and $\overline{\text{CS2}}$ inputs to the device-select driver of the host microcontroller. Alternatively, connect one of the $\overline{\text{CS}}$ inputs to the device-select driver of the host microcontroller and the other $\overline{\text{CS}}$ to DGND. Both methods allow standard SPI interface operation. See Figures 3 and 4.

Daisy-Chain SPI Connection

The MAX15500/MAX15501-modified SPI interface allows a single SPI master to drive multiple devices in a daisy-chained configuration, saving additional SPI channels for other devices and saving cost in isolated applications.

Figure 5 shows multiple MAX15500/MAX15501 devices connected in a daisy chain. The chain behaves as a single device to the microcontroller in terms of timing with an expanded instruction frame requiring 16 SCLK cycles per device for complete programming. No timing parameters are affected by the READY propagation as all devices connect to the microcontroller chip-select through the $\overline{\text{CS1}}$ inputs.

A chain of MAX15500/MAX15501 devices can be terminated with any standard SPI-compatible single device without a READY output. The MAX15500/MAX15501 portion of the chain continues to display timing parameters comparable to a single device. See Figure 6.

When using the MAX15500/MAX15501 with mixed chains, the connections could require some modification to accommodate the interfaces of the additional devices in the chain. Construct the daisy chain as shown in Figure 7 when using devices with similar $\overline{\text{READY}}$ outputs but without dual $\overline{\text{CS}}_{-}$ inputs such as the MAX5134 quad 16-bit DAC. The chain is subject to timing relaxation for parameters given with respect to $\overline{\text{CS}}_{-}$ rising edges to accommodate $\overline{\text{READY}}$ propagation to and through consecutive MAX5134 devices.

The chain can begin and terminate with either device type. Each MAX5134 or MAX15500/MAX15501 device in the chain could be replaced by a subchain of similar devices. If the chain is terminated with a standard SPI device, omit the optional connection from READY to the

monitor input on the microcontroller. The MAX15500/MAX15501 portion of the chain continues to display timing parameters comparable to a single device.

SPI Digital Specifications and Waveforms

Figures 8, 9, and 10 show the operation of the modified SPI interface. The minimum programming operation typically used in single device applications is 16 SCLK periods, the minimum for a valid frame. This cycle can also represent the operation of the final device in a chain.

The extended programming operation is typically used for devices in daisy-chained applications. In this case, $\overline{\text{READY}}$ drives the chip-select input of the subsequent device in the chain. The next device in the chain begins its active frame on the 16th SCLK falling edge in response to $\overline{\text{READY}}$ falling (latching DIN[13] on the 17th SCLK falling edge, if present).

Aborted SPI Operations

Driving a $\overline{\text{CS}_-}$ input high before a valid SPI frame is transmitted to the device can cause an erroneous command. Avoid driving $\overline{\text{CS}_-}$ high before a valid SPI frame is transmitted to the device. See Figures 9 and 10 for valid SPI operation timing.

SPI Operation Definitions

Input data bits DIN[13:11] represent the SPI command address while DIN[9:0] represent the data written to or read from the command address. The command address directs subsequent input data to the proper internal register for setting up the behavior of the device and selects the correct status data for readback through DOUT. Command address 0h points to a no-op command and does not impact the operation of the device. DOUT is active during this operation and reads back 00h. Command address 1h points to the configuration register used to program the MAX15500/MAX15501. Device configuration takes effect following the 14th SCLK falling edge. DOUT activates and remains low during this operation. Command addresses 4h and 5h point to readback commands of the MAX15500/MAX15501. Readback commands provide configuration and error register status through DOUT[9:0] and do not affect the internal operation of the device. Command addresses 2h, 3h, 6h, and 7h are reserved for future use. Table 5 shows the list of commands.

Device Configuration Operation

Table 6 shows the function of each bit written to the configuration register 1h. Table 7 shows the data readback registers.

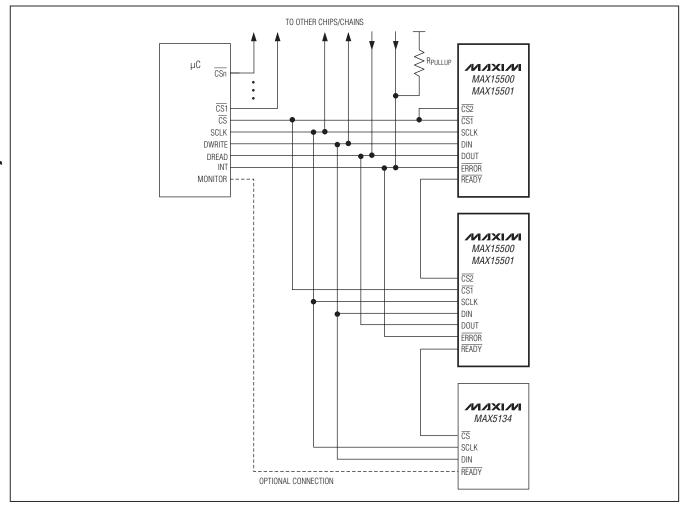


Figure 7. Mixed MAX15500/MAX15501 and MAX5134 Daisy-Chain Connections

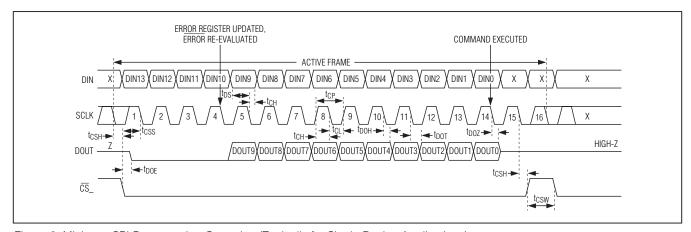


Figure 8. Minimum SPI Programming Operation (Typically for Single Device Applications)

22 /VI/IXI/VI

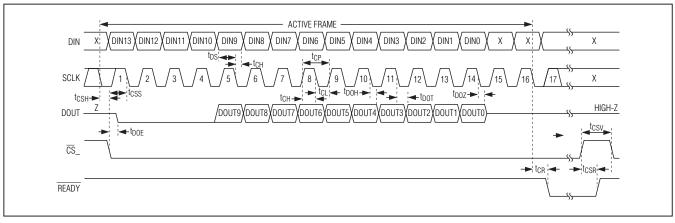


Figure 9. Extended SPI Programming Operation (Daisy-Chained Applications)

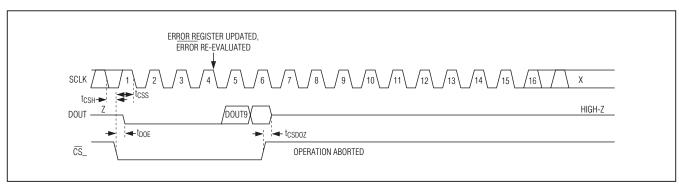


Figure 10. Aborted SPI Programming Operation (Invalid, Showing tospoz and Internal Activity)

Readback Operations

Write to the command addresses 4h or 5h to read back the configuration register data or the internal error information through DOUT[9:0]. For error readback operations, each bit corresponds to a specific error condition, with multiple bits indicating multiple error conditions present.

Intermittent Errors

An intermittent error is defined as an error that is detected and is resolved before the error register is read back. When the error is resolved without intervention, the intermittent bit (bit 9) is set. The output short-circuit and output open-load errors trigger the intermittent bit. Internal over-

temperature and supply voltage brownout do not trigger the intermittent bit.

Error Reporting Applications

The ERROR output is typically connected to an interrupt input of the system microcontroller. The MAX15500/MAX15501 only issue an interrupt when a new error condition is detected. The devices do not issue interrupts when errors (either individual or multiple) are resolved or when already reported errors persist. The system microcontroller resets ERROR when the system microcontroller reads back the error register. ERROR does not assert again unless a different error occurs.

Table 5. SPI Commands

COMMAND ADDRESS DIN[13:11]	NAME DESCRIPTION				
000	No-op	No operation.			
001	Write configuration	Write device configuration register. See Table 6 for details.			
010	Reserved	Reserved, no operation.			
011	Reserved	Reserved, no operation.			
100	Read error	Read error register status. See Table 7 for details.			
101	Read configuration	Read device configuration register. See Table 6 for details.			
110	Reserved	Reserved, no operation.			
111 Reserved R		Reserved, no operation.			

Table 6. Configuration Register

LOCATION	FUNCTION	DESCRIPTION					
DIN[9:7]	Mode[2:0]	Sets device operating mode. 000 Mode[0]: Standby 001 Mode[1]: Bipolar current: ±20mA 010 Mode[2]: Unipolar current: 0 to 20mA 011 Mode[3]: Unipolar current: 4mA to 20mA	100 Mode[4]:Standby 101 Mode[5]:Bipolar voltage: ±10V 110 Mode[6]:Unipolar voltage: 0 to 10V 111 Mode[7]:Unipolar voltage: 0 to 5V				
DIN[6:4]	VBOTH[2:0]	Sets supply voltage brownout threshold for error 000: ±10V 100: ±18V 001: ±12V 101: ±20V 010: ±14V 110: ±22V 011: ±16V 111: ±24V	or reporting.				
DIN[3]	Thermal shutdown	0 = thermal protection off. 1 = thermal protection	on on.				
DIN[10], DIN[2:0]	_	Reserved					

Note: Modes 2h and 3h are functionally identical.

Table 7. Readback Operations and Formatting

DOUT BITS	DESCRIPTION						
COMMAND ADDRESS DIN[13:11] = 101. READBACK DEVICE CONFIGURATION REGISTER							
DOUT[9:0]	See configuration register details in Table 6.						
COMMAND ADD	DRESS DIN[13:11] = 100. READBACK ERROR REGISTER						
DOUT[9]	OUT[9] Output intermittent fault. For details, see the <i>Error Handling</i> section.						
DOUT[8]	OUT[8] Output short circuit. This bit asserts when IOUT > 30mA in voltage and current modes for longer than 260ms.						
DOUT[7] Output open load. This bit asserts when V _{OUT} is within 30mV of AVDDO or AVSSO and there is no condition for longer than 260ms.							
DOUT[6]	Internal overtemperature. This bit asserts when the die temperature exceeds +150°C.						
DOUT[5]	Supply brownout. This bit asserts when either supply has entered the brownout limits. See Table 6 for details.						
DOUT[4:0] Reserved							

MIXIM

Since the MAX15500/MAX15501 do not use a continuous clock signal, the SPI read cycles are used to cycle the error detection and reporting logic. Continue to poll the device until the error readback reports an all clear status when resolving single or multiple errors. See below for examples of typical error handling situations and the effects of the SPI read operations.

- 1) Error resolved by the system.
 - a) The MAX15500/MAX15501 detect an error condition and ERROR asserts.
 - b) The host controller reads the error register for the first time. This has the effect of resetting ERROR. The data indicates to the host processor which error is active.
 - c) The host processor resolves the error successfully.
 - d) The host processor reads the error register for the second time. The data still shows that the error is present as the error persisted for some time after step b and before step c. If the error is either an open load or short circuit, the intermittent bit is set. An overtemperature or a brownout does not set the intermittent bit. Reading the register a second time resets the register.
 - e) The host reads the error register for a third time. The data now shows the error is resolved and future occurrences of this error will trigger ERROR assertion.
- 2) Error resolved before the host processor reads error register.
 - a) The MAX15500/MAX15501 detect an error condition and $\overline{\text{ERROR}}$ asserts, but the error resolves itself.
 - b) The host controller reads the error register for the first time resetting ERROR. The data indicates to the host processor which error is active. The data also indicates to the host that the error has been resolved since the intermittent bit is set.
 - c) The host processor reads the error register for the second time. The data still shows that the error is active. If the error is for an output fault, the data also indicates to the host that the error has been resolved since the intermittent bit is set. Reading the register a second time resets the register.

- 3) An error that cannot be resolved.
 - a) The MAX15500/MAX15501 detect an error condition and ERROR asserts.
 - b) The host controller reads the error register for the first time and resets ERROR. The data indicates to the host processor which error is active.
 - c) The host processor takes action to resolve the error unsuccessfully.
 - d) The host processor reads the error register for the second time. The data still shows that the error is present.
 - e) The host processor reads the error for the third time. The data show the error to be unresolved. ERROR does not respond to the same error until the error is resolved and reported. ERROR asserts if different errors occur.

Applications Information

Setting the Output Gain in Current Mode

In current mode, there is approximately 1.0V across the current-sensing resistors at full scale. The current sensing resistor sets the gain and is calculated as follows:

RSENSE = VSENSE_FS/IMAX

where VSENSE_FS is the full-scale voltage across the sense resistor.

See Table 8 for values of VSENSE_FS.

Output Gain in Voltage Mode

The output gain in voltage mode is fixed as shown in Table 9.

Selection of the Compensation Capacitor (CCOMP)

Use Table 10 to select the compensation capacitor.

_Layout Considerations

In the current-mode application, use Kelvin and a short connection from SENSERN and SENSERP to the RSENSE terminals to minimize gain-error drift. Balance and minimize all analog input traces for optimum performance.

V _{REFIN} (V)	OVERRANGE (%)	BIPOLAR/ UNIPOLAR	MODE	VSENSE_FS (V)	RSENSE (Ω)	lout (mA)	IDEAL GAIN	IDEAL TRANSFER FUNCTION
	+20	Unipolar	2	1.02144	42.2	24.205	0.2625/42.2	IOUT = 0.2625 x (VAIN - 0.05 x VREFIN)/42.2
4.096	+20	Bipolar	1	±1.024	42.2	±24.27	0.5/42.2	IOUT = 0.5 x (VAIN - 0.5 x VREFIN)/42.2
4.090	+5	Unipolar	2	1.02144	48.7	20.97	0.2625/48.7	IOUT = 0.2625 x (VAIN - 0.05 x V _{REFIN})/48.7
		Bipolar	1	±1.024	48.7	±21.03	0.5/48.7	I _{OUT} = 0.5 x (V _{IN} - 0.5 x V _{REFIN})/48.7
	. 00	Unipolar	2	1.009375	41.2	24.5	0.425/41.2	I _{OUT} = 0.425 x (V _{IN} - 0.0 x V _{REFIN})/41.2
2.500	+20	Bipolar	1	±1	41.2	±24.27	0.8/41.2	I _{OUT} = 0.8 x (V _{IN} - 0.5 x V _{REFIN})/41.2
	_	Unipolar	2	1.009375	47.5	21.25	0.425/47.5	I _{OUT} = 0.425 x (V _{IN} - 0.0 x V _{REFIN})/47.5
	+5	Bipolar	1	±1	47.5	±21.05	0.8/47.5	I _{OUT} = 0.8 x (V _{IN} - 0.5 x V _{REFIN})/47.5

Table 9. Full-Scale Output Voltages

V _{REFIN} (V)	OVERRANGE (%)	BIPOLAR/ UNIPOLAR	MODE	IDEAL GAIN	IDEAL TRANSFER FUNCTION	IDEAL VOUT
	11-2		7	1.5625	V _{OUT} = 1.5625 x (V _{IN} - 0.05 x V _{REFIN})	6.08
	+20	Unipolar	6	3.125	V _{OUT} = 3.125 x (V _{IN} - 0.05 x V _{REFIN})	12.16
4.000		Bipolar	5	6.0	V _{OUT} = 6.0 x (V _{IN} - 0.5 x V _{REFIN})	±12.288
4.096	4.096	+5 Unipolar	7	1.375	V _{OUT} = 1.375 x (V _{IN} - 0.05 x V _{REFIN})	5.3504
			6	2.75	Vout = 2.75 x (Vin - 0.05 x Vrefin)	10.7008
		Bipolar	5	5.25	V _{OUT} = 5.25 x (V _{IN} - 0.5 x V _{REFIN})	±10.752
		Liningler	7	2.5125	Vout = 2.5125 x (Vin - 0.05 x Vrefin)	5.96719
+20		+20 Unipolar	6	5.0625	V _{OUT} = 5.0625 x (V _{IN} - 0.05 x V _{REFIN})	12.0234
2.500		Bipolar	5	9.6	Vout = 9.6 x (Vin - 0.5 x Vrefin)	±12
	+5		7	2.175	V _{OUT} = 2.175 x (V _{IN} - 0.05 x V _{REFIN})	5.16563
		+5	Unipolar	6	4.425	VOUT = 4.425 x (VIN - 0.05 x VREFIN)
		Bipolar	5	8.4	V _{OUT} = 8.4 x (V _{IN} - 0.5 x V _{REFIN})	10.5

MIXIM

Table 10. Recommended Compensation Capacitor for Various Load Conditions

MODE	C _L (F)	R _L (kΩ)	L _L (H)	C _{COMP} (F)
Voltage	0 to 1n	1	0	0
Voltage	1n to 100n	1	0	1n
Voltage	100n to 1µ	1	0	2.2n
Voltage	1μ to 100μ	1	0	4.7n
Current	0 to 1n	20 to 750	0 to 20µ	0
Current	0 to 1n	20 to 750	20μ to 1m	2.2n
Current	0 to 1n	20 to 750	1m to 50m	100n
Current	1n to 100n	20 to 750	0 to 20µ	1n
Current	1n to 100n	20 to 750	20μ to 1m	2.2n
Current	1n to 100n	20 to 750	1m to 50m	100n
Current	100n to 1µ	20 to 750	0 to 20µ	2.2n
Current	100n to 1µ	20 to 750	20μ to 1m	2.2n
Current	100n to 1µ	20 to 750	1m to 50m	100n
Current	1μ to 100μ	20 to 750	0 to 20µ	2.2n
Current	1μ to 100μ	20 to 750	20μ to 1m	2.2n
Current	1μ to 100μ	20 to 750	1m to 50m	100n

 C_L = Load capacitance. R_L = Load resistance.

L_L = Load inductance.

PROCESS: BiCMOS

 $C_{COMP} = C_{ompensation}$ capacitance.

Chip Information

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
32 TQFN-EP	T3255+4	<u>21-0140</u>

⁺Denotes a lead(Pb)-free/RoHS-compliant package. The package outline drawings for leaded and lead-free packages are

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.